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Abstract

A closed-loop controller for hypnosis was
designed and validated on humans at our
laboratory. The controller aims at regulat-
ing the Bispectral Index (BIS) - a surro-
gate measure of hypnosis derived from the
electroencephalogram of the patient - with
the volatile anesthetic isoflurane administered
with a closed-circuit breathing system. The
control algorithm consists of a cascaded Inter-
nal Model Controller (IMC) where the master
loop aims at regulating BIS. The slave loop
tracks endtidal concentration references pro-
vided by the master controller. In this paper,
a new tuning method is presented. First, a ro-
bust design procedure which guarantees sta-
bility of the slave controller despite paramet-
ric uncertainties is described. Then, we will
demonstrate how the estimation of the drug’s
equilibration constant ke0 greatly improves
performance if the estimated value is used to
update the models in the control scheme. In
order to do so, an identification scheme for ke0

is proposed, which requires estimation of the
drug’s time to peak effect tpeak. The identifica-
tion algorithm requires few modeling assump-
tions and guarantees convergence. Simulation
results are presented, which quantify both the
performance of the identification scheme and
the improvement of the closed-loop control
performance.

Keywords : Closed-Loop Control, Internal
Model Control (IMC), Hypnosis, Isoflurane,
Identification.

1 Introduction

Closed-loop control in anesthesia is receiving in-
creasing attention both from a research and a clinical
perspective [3, 2]. A necessary condition for the feasi-
bility of a closed-loop drug administration scheme is
the availability of a measurement for the clinical end-

point to be targeted. Bispectral Index (BIS) mon-
itors provide anesthesiologists with an ideal target
for the administration of hypnotic drugs and enable
closed-loop hypnotic administration [6].
In general, large model variability severely limits

the controller’s performance. In order to guarantee
stable controller behaviour for the whole population
of patients, closed-loop controllers must often be ‘de-
tuned’. That is, they are tailored to the worst case
situation and consequently tend to be sluggish for
the average subject in the population. A possible
way to improve performance consists in estimating
the particular subject’s characteristics during anes-
thesia. However, on-line adaptation is limited by re-
stricted bandwidth on the inputs to be applied and
ethical constraints.
We developed a method for controller design that

combines robust and adaptive controller tuning. The
design procedure was applied to an existing cascaded
Internal Model Controller (IMC) which regulates BIS
with isoflurane. A robust design method is used to
adjust the aggressiveness of the slave controller to
cope with uncertainties in the actuator and in the
pharmacokinetic (PK) model. In the pharmacody-
namic (PD) model, an identification algorithm which
uses the data gathered during the initial uptake of
the volatile agent is used to adapt to the specific pa-
tient’s characteristics. The proposed scheme allows
us to identify the equilibration constant of isoflurane
without special or additional administration of anes-
thetic.
After a brief outline of the cascaded IMC controller,
the mathematical background of the identification
procedure is discussed. Simulation examples are re-
ported, which quantify the accuracy of the estima-
tion algorithm. Then, tuning of the slave and master
controller on the basis of the identified equilibration
constant are presented. Simulations of the closed-
loop controller response are shown, which demon-
strate performance improvements.
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Figure 1: Block diagram of the cascaded Internal Model
Control (IMC) to regulate BIS.

2 BIS Controller

A. Controller Setup
In this section the principles of the closed-loop con-

troller are presented. Figure 1 depicts the block dia-
gram of the cascade closed-loop controller to regulate
BIS [4]. Ct and Ct,ref denote endtidal concentra-
tion measurements and references measured as vol-
ume percentages. The input of the control system u
is the isoflurane concentration in the fresh gas mix-
ture entering the breathing system. u is constrained
between 0% and 5% and will be denoted as ‘vaporizer
setting’ from here on. The slave controller Q2 tracks
endtidal concentration references values Ct,ref pro-
vided by the master controller. The saturation af-
ter Q1 constrains endtidal concentration references
between a lower and an upper limit specified by the
anesthesiologist. This is done to guarantee minimum
delivery of hypnotics and to prevent overdosing, re-
spectively. In Fig. 1, P2 and P̃2 represent the trans-
fer functions from the vaporizer setting u to endtidal
concentration Ct in the patient and in the parallel
IMC model, respectively. The models combine the
dynamic description of the closed-circuit breathing
system with the PK model of isoflurane.
P1 and P̃1 in Fig.1 represent the dynamic model
which links endtidal concentration Ct to effect site
concentrations Ce [%]. Precisely, we adopted the fol-
lowing first order model:

dCe

dt
= ke0(Ct − Ce) (1)

where ke0 is the equilibration constant at the effect
site. Q2 and Q1 were chosen as the filtered inverses of
the nominal plants [5]. The IMC filters were chosen
as:

Fi(s) =
1

(λi s+ 1)ni
(2)

with n2 = 3 and n1 = 2 to guarantee strict proper-
ness of the controllers. λ1 and λ2 affect the speed of
the master and slave controller, respectively. More
precisely, for a single linear IMC control system with
P = P̃ , the closed-loop transfer function from refer-
ence to output values is F (s) [5].
Among others, one particular advantage of the pro-
posed IMC strategy was exploited in the tuning pro-
cedure presented here. Namely, every additional in-

formation about the patient or the actuator can be
embedded directly into the controller scheme by up-
dating the corresponding parameters in the parallel
models. This last aspect is exploited in the proposed
adaptive design procedure.

B. Motivating Example
To guarantee controller stability in spite of model

uncertainty, the tuning parameters λ1 and λ2 were
set to relatively high values during initial clinical
studies. This in turn decreased the controller’s per-
formance for the average subject in our models. Fig-
ure 2 illustrates an oscillating closed-loop step re-
sponse with λ1 and λ2 set to 0.6 [min] and 0.4 [min],
respectively. In the depicted simulation, paramet-
ric uncertainties were considered in the slave con-
trol loop. As for the master control loop, we chose
ke0 > k̃e0. The simulation example suggests that in
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Figure 2: Simulated closed-loop step response with
model uncertainty in the slave model. For
simulation purposes we set ke0 = 1 [min−1]
and k̃e0 =0.385 [min−1] in the master loop.

order to not only improve control performance but
also guarantee acceptable controller behaviour, rel-
evant patient characteristics must be identified and
used during controller tuning. Among the relevant
parameters to be identified, the drug equilibration
constant ke0 plays a key role. Parametric uncertain-
ties in the slave model on the other hand, have little
impact on controller behaviour, since the parame-
ters having the most significant effect on the per-
formance of the slave controller are the parameters
of the breathing system. These are modified by the
anesthesiologist during surgery and are periodically
used to update the paralell model in the slave loop.

3 Mathematical Background

The identification algorithm requires knowledge
of the time to peak effect tpeak in the BIS profile
following a square input of isoflurane. Due to the
noise characteristics of the BIS signal, tpeak must
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be estimated from an appropriately filtered BIS
sequence. The calculated tpeak is then used to
compute the equilibration constant ke0.

A. Estimation Algorithm
The PD model relating the effect site concentra-

tion Ce to BIS is monotone decreasing. Therefore
the time to peak tpeak of the resulting BIS profile
corresponds to the time to peak of the effect site
concentration. From (1) we deduce that Ct(tpeak) =
Ce(tpeak) where Ct [%] denotes endtidal concentra-
tion measurements. In the literature [7] the function

F (t, ke0) = Ct(t)− Ce(t, ke0) (3)

was considered, for which the patient’s equilibration
constant k∗

e0 is such that F (tpeak, k∗
e0) = 0.

To solve (3) for k∗
e0 a bisection method was proposed

[7]. However, since the endtidal concentration mea-
surements do not depend on effect site concentra-
tions, we have:

∂F

∂ke0
|t=tpeak

= − ∂Ce

∂ke0
|t=tpeak

< 0 ∀ ke0 < k∗
e0.

(4)

To verify the last inequality, note that from (1), the
locus Ct(t) can be regarded as the envelope of the
maxima of Ce(t) for different values of ke0. This
implies that, below Ct(t), Ce(t) is monotone increas-
ing. In particular, the effect site concentration grows
faster for higher equilibration constants ke0. Equa-
tion (4) allows us to use the Newton algorithm to
find the solution k∗

e0 . The algorithm is iterative and
guarantees convergence to the solution at a quadratic
rate [1]. According to (4) the initial guess to start
the iteration must be smaller than the solution k∗

e0

(e.g. k0
e0 = 0). We have:

F (0) = Cp(tpeak) (5)

kk+1
e0 = kk

e0 −
F (kk

e0)
F ′(kk

e0)
(6)

In the preceding equations the notation was simpli-
fied in the sense that F (ke0) stands for F (ke0, tpeak),
as it will be assumed from now on. Endtidal concen-
trations and BIS are obtained at a sampling time of
∆T= 5 [s]. The discrete equivalent of (1) is:

Ce(k+1) = e−ke0∆T Ce(k)+(1−e−ke0∆T )Ct(k) (7)

where k denotes the generic sampling time. Assum-
ing that the sampling time npeak at which the BIS
peak occurs is known, ke0 can be computed using the
iterative method in (6).

B. Estimation Accuracy
Figure 3 depicts the accuracy of the identification

algorithm for the estimated k̂e0 as a function of the

k̂
e
0
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]
-1
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Figure 3: Estimation accuracy of the ke0 identification
algorithm. Each boxplot depicts the sum-
mary statistics of 100 simulations which were
performed for every ke0. We assumed that
BIS measurements were corrupted by zero
mean gaussian noise with variance σBIS . We
adopted σBIS = 4 and σBIS = 2.6 in the left
and right plot, respectively.

real ke0 and of the measurement noise in BIS. In
each plot, 100 simulations were performed for ev-
ery ke0, assuming that BIS measurements are cor-
rupted by gaussian noise. We excluded equilibration
constants such that ke0 > 1[min−1], since there is
no discernible difference in behaviour amongst such
patients. During the simulation, the vaporizer set-
ting was set to 5% until BIS measurements reached
50. Subsequently, the vaporizer was set to 0% un-
til a minimum was recognizable from the data series.
Then automatic control was switched on to maintain
a reference BIS of 50. The variance σ̂ke0 of k̂e0 in-
creases with ke0, as can be seen by the boxplots in
Fig. 3. This trend can be explained when consider-
ing the time profile of both endtidal concentrations
and BIS values. In fact, for increasing ke0, tpeak

converges to the time to peak of the endtidal con-
centration profile. In these cases we cannot provide
an accurate estimate k̂e0 from the tpeak information.
However, for cases with ke0 ≤ 1[min−1], when con-
sidering the coefficient of variation CV = σ/µ, the
estimation accuracy is approximately CV = 0.03 and
CV = 0.02 for σBIS = 4 and σBIS = 2.6 as measure-
ment noises, respectively.

4 Controller Tuning

This section will highlight the two fundamen-
tally different approaches for controller tuning in the
slave- and the master-loop.
A robust tuning procedure was applied to the slave
loop, where a sufficient condition for stability is

|F2(jω)| <
1

lm(ω)
(8)

Proceedings – 23rd Annual Conference – IEEE/EMBS Oct.25-28,  2001,  Istanbul,  TURKEY 

 



4 of 4

F2 is the IMC filter introduced in (2) and lm(ω)
represents an upper bound for the multiplicative
uncertainty [5]. We considered variations in both
PK and closed-circuit respiratory system parameters
such that 85% of the statistical variation around
their nominal value is captured. This allows us to
use λ2 = 0.1 [min] as a lower boundary. In the final
implementation we used a λ2 = 0.4 in order to gain
a safety margin towards general model uncertainty.
Analogously to (8) for the slave controller, plant-

model mismatches also limit the aggressiveness of
the master controller by imposing a lower bound on
λ1. However, the dynamics of the parallel model in
the master controller are exclusively determined by
ke0. Consequently, if the estimated ke0 is used to
update the model in the master controller, we are
allowed to decrease λ1 by virtue of a reduced model
uncertainty.
Since there is no established analytical way to
analyze a cascaded IMC controller with model
uncertainties and non-linear elements, we had to
rely on comprehensive simulation to find optimal
settings for the filter parameter λ1. The simulations
performed revealed that a λ1 = 0.6 [min] suits our
specifications best.

5 Controller Performance

The modifications discussed in the previous sec-
tion guarantee robust control as well as fast settling
times even for large model uncertainties, as depicted
in Fig. 4, where the modified controller is applied
to the worst case scenario introduced beforehand in
Fig. 2. Even though the sufficient conditions for ro-
bustness allow us deviations in the average subject
parameters up to 1.55σ, extensive simulations have
shown stable behaviour for parametric uncertainties
up to 2σ, which corresponds to more than 95% of
the statistical spread of parameters. Unfortunately,
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Figure 4: Step response for a model uncer-
tainty of 2σBIS with ke0 = 1 [min−1] and
k̃e0 = 1.3[min−1]

we have thus far not been able to test our tuning al-
gorithm in a clinical environment and are therefore
restricted to simulation results.

6 Conclusion

In this paper we presented an approach which aims
at improving controller performance in spite of large
model uncertainties.
Apart from the improved control performance, we
showed that the influence of uncertainties in other
PK parameters becomes negligible once the patient’s
ke0 is embedded in the model used for control.
Our tuning approach has decreased average settling
times by 35% without generating large overshoots.
From the results presented in the paper, one may
venture to conclude that the identification of the
patient’s characteristics is imperative to guarantee
an adequate closed-loop performance. Model-based
control approaches allow a transparent reconfigura-
tion of the control algorithm on the basis of the
identified patient’s parameters. Consequently, they
emerge as the ideal control strategy for biomedical
systems.
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2001.

[3] A. Gentilini, C. W. Frei, A. H. Glat-
tfelder, M. Morari, T. J. Sieber, R. Wymann, and
Schnider.T. W. Multitasked closed-loop control in
anesthesia. IEEE Engineering in Medicine and Bi-
ology Magazine, 19(6), 2001.

[4] A. Gentilini, M. Rossoni-Gerosa, C. Frei,
R. Wymann, M. Morari, A. Zbinden, and
T. Schnider. Modeling and closed loop control of
hypnosis by means of bispectral index (BIS) with
Isoflurane. IEEE Transaction on Biomedical Engi-
neering, In press, 2001.

[5] M. Morari and E. Zafiriou. Robust Process
Control. Prentice Hall. Englewood Cliffs, New Jer-
sey., 1989.

[6] I. J. Rampil. A primer for EEG signal process-
ing analysis. Anesthesiology, 89:980–1002, 1998.

[7] W. L. Van Meurs, E. Nikkelen, and M. L.
Good. Pharmacokinetic-Pharmacodynamic model-
ing for educational simulations. IEEE Transaction
on Biomedical Engineering, 45(5):582–590, 1998.

Proceedings – 23rd Annual Conference – IEEE/EMBS Oct.25-28,  2001,  Istanbul,  TURKEY 

 


	Main Menu
	-------------------------
	Welcome Letter
	Chairman Address
	Keynote Lecture
	Plenary Talks
	Mini Symposia
	Workshops
	Theme Index
	1.Cardiovascular Systems and Engineering 
	1.1.Cardiac Electrophysiology and Mechanics 
	1.1.1 Cardiac Cellular Electrophysiology
	1.1.2 Cardiac Electrophysiology 
	1.1.3 Electrical Interactions Between Purkinje and Ventricular Cells 
	1.1.4 Arrhythmogenesis and Spiral Waves 

	1.2. Cardiac and Vascular Biomechanics 
	1.2.1 Blood Flow and Material Interactions 
	1.2.2.Cardiac Mechanics 
	1.2.3 Vascular Flow 
	1.2.4 Cardiac Mechanics/Cardiovascular Systems 
	1.2.5 Hemodynamics and Vascular Mechanics 
	1.2.6 Hemodynamic Modeling and Measurement Techniques 
	1.2.7 Modeling of Cerebrovascular Dynamics 
	1.2.8 Cerebrovascular Dynamics 

	1.3 Cardiac Activation 
	1.3.1 Optical Potential Mapping in the Heart 
	1.3.2 Mapping and Arrhythmias  
	1.3.3 Propagation of Electrical Activity in Cardiac Tissue 
	1.3.4 Forward-Inverse Problems in ECG and MCG 
	1.3.5 Electrocardiology 
	1.3.6 Electrophysiology and Ablation 

	1.4 Pulmonary System Analysis and Critical Care Medicine 
	1.4.1 Cardiopulmonary Modeling 
	1.4.2 Pulmonary and Cardiovascular Clinical Systems 
	1.4.3 Mechanical Circulatory Support 
	1.4.4 Cardiopulmonary Bypass/Extracorporeal Circulation 

	1.5 Modeling and Control of Cardiovascular and Pulmonary Systems 
	1.5.1 Heart Rate Variability I: Modeling and Clinical Aspects 
	1.5.2 Heart Rate Variability II: Nonlinear processing 
	1.5.3 Neural Control of the Cardiovascular System II 
	1.5.4 Heart Rate Variability 
	1.5.5 Neural Control of the Cardiovascular System I 


	2. Neural Systems and Engineering 
	2.1 Neural Imaging and Sensing  
	2.1.1 Brain Imaging 
	2.1.2 EEG/MEG processing

	2.2 Neural Computation: Artificial and Biological 
	2.2.1 Neural Computational Modeling Closely Based on Anatomy and Physiology 
	2.2.2 Neural Computation 

	2.3 Neural Interfacing 
	2.3.1 Neural Recording 
	2.3.2 Cultured neurons: activity patterns, adhesion & survival 
	2.3.3 Neuro-technology 

	2.4 Neural Systems: Analysis and Control 
	2.4.1 Neural Mechanisms of Visual Selection 
	2.4.2 Models of Dynamic Neural Systems 
	2.4.3 Sensory Motor Mapping 
	2.4.4 Sensory Motor Control Systems 

	2.5 Neuro-electromagnetism 
	2.5.1 Magnetic Stimulation 
	2.5.2 Neural Signals Source Localization 

	2.6 Clinical Neural Engineering 
	2.6.1 Detection and mechanisms of epileptic activity 
	2.6.2 Diagnostic Tools 

	2.7 Neuro-electrophysiology 
	2.7.1 Neural Source Mapping 
	2.7.2 Neuro-Electrophysiology 
	2.7.3 Brain Mapping 


	3. Neuromuscular Systems and Rehabilitation Engineering 
	3.1 EMG 
	3.1.1 EMG modeling 
	3.1.2 Estimation of Muscle Fiber Conduction velocity 
	3.1.3 Clinical Applications of EMG 
	3.1.4 Analysis and Interpretation of EMG 

	3. 2 Posture and Gait 
	3.2.1 Posture and Gait

	3.3.Central Control of Movement 
	3.3.1 Central Control of movement 

	3.4 Peripheral Neuromuscular Mechanisms 
	3.4.1 Peripheral Neuromuscular Mechanisms II
	3.4.2 Peripheral Neuromuscular Mechanisms I 

	3.5 Functional Electrical Stimulation 
	3.5.1 Functional Electrical Stimulation 

	3.6 Assistive Devices, Implants, and Prosthetics 
	3.6.1 Assistive Devices, Implants and Prosthetics  

	3.7 Sensory Rehabilitation 
	3.7.1 Sensory Systems and Rehabilitation:Hearing & Speech 
	3.7.2 Sensory Systems and Rehabilitation  

	3.8 Orthopedic Biomechanics 
	3.8.1 Orthopedic Biomechanics 


	4. Biomedical Signal and System Analysis 
	4.1 Nonlinear Dynamical Analysis of Biosignals: Fractal and Chaos 
	4.1.1 Nonlinear Dynamical Analysis of Biosignals I 
	4.1.2 Nonlinear Dynamical Analysis of Biosignals II 

	4.2 Intelligent Analysis of Biosignals 
	4.2.1 Neural Networks and Adaptive Systems in Biosignal Analysis 
	4.2.2 Fuzzy and Knowledge-Based Systems in Biosignal Analysis 
	4.2.3 Intelligent Systems in Speech Analysis 
	4.2.4 Knowledge-Based and Neural Network Approaches to Biosignal Analysis 
	4.2.5 Neural Network Approaches to Biosignal Analysis 
	4.2.6 Hybrid Systems in Biosignal Analysis 
	4.2.7 Intelligent Systems in ECG Analysis 
	4.2.8 Intelligent Systems in EEG Analysis 

	4.3 Analysis of Nonstationary Biosignals 
	4.3.1 Analysis of Nonstationary Biosignals:EEG Applications II 
	4.3.2 Analysis of Nonstationary Biosignals:EEG Applications I
	4.3.3 Analysis of Nonstationary Biosignals:ECG-EMG Applications I 
	4.3.4 Analysis of Nonstationary Biosignals:Acoustics Applications I 
	4.3.5 Analysis of Nonstationary Biosignals:ECG-EMG Applications II 
	4.3.6 Analysis of Nonstationary Biosignals:Acoustics Applications II 

	4.4 Statistical Analysis of Biosignals 
	4.4.1 Statistical Parameter Estimation and Information Measures of Biosignals 
	4.4.2 Detection and Classification Algorithms of Biosignals I 
	4.4.3 Special Session: Component Analysis in Biosignals 
	4.4.4 Detection and Classification Algorithms of Biosignals II 

	4.5 Mathematical Modeling of Biosignals and Biosystems 
	4.5.1 Physiological Models 
	4.5.2 Evoked Potential Signal Analysis 
	4.5.3 Auditory System Modelling 
	4.5.4 Cardiovascular Signal Analysis 

	4.6 Other Methods for Biosignal Analysis 
	4.6.1 Other Methods for Biosignal Analysis 


	5. Medical and Cellular Imaging and Systems 
	5.1 Nuclear Medicine and Imaging 
	5.1.1 Image Reconstruction and Processing 
	5.1.2 Magnetic Resonance Imaging 
	5.1.3 Imaging Systems and Applications 

	5.2 Image Compression, Fusion, and Registration 
	5.2.1 Imaging Compression 
	5.2.2 Image Filtering and Enhancement 
	5.2.3 Imaging Registration 

	5.3 Image Guided Surgery 
	5.3.1 Image-Guided Surgery 

	5.4 Image Segmentation/Quantitative Analysis 
	5.4.1 Image Analysis and Processing I 
	5.4.2 Image Segmentation 
	5.4.3 Image Analysis and Processing II 

	5.5 Infrared Imaging 
	5.5.1 Clinical Applications of IR Imaging I 
	5.5.2 Clinical Applications of IR Imaging II 
	5.5.3 IR Imaging Techniques 


	6. Molecular, Cellular and Tissue Engineering 
	6.1 Molecular and Genomic Engineering 
	6.1.1 Genomic Engineering: 1 
	6.1.2 Genomic Engineering II 

	6.2 Cell Engineering and Mechanics 
	6.2.1 Cell Engineering

	6.3 Tissue Engineering 
	6.3.1 Tissue Engineering 

	6.4. Biomaterials 
	6.4.1 Biomaterials 


	7. Biomedical Sensors and Instrumentation 
	7.1 Biomedical Sensors 
	7.1.1 Optical Biomedical Sensors 
	7.1.2 Algorithms for Biomedical Sensors 
	7.1.3 Electro-physiological Sensors 
	7.1.4 General Biomedical Sensors 
	7.1.5 Advances in Biomedical Sensors 

	7.2 Biomedical Actuators 
	7.2.1 Biomedical Actuators 

	7.3 Biomedical Instrumentation 
	7.3.1 Biomedical Instrumentation 
	7.3.2 Non-Invasive Medical Instrumentation I 
	7.3.3 Non-Invasive Medical Instrumentation II 

	7.4 Data Acquisition and Measurement 
	7.4.1 Physiological Data Acquisition 
	7.4.2 Physiological Data Acquisition Using Imaging Technology 
	7.4.3 ECG & Cardiovascular Data Acquisition 
	7.4.4 Bioimpedance 

	7.5 Nano Technology 
	7.5.1 Nanotechnology 

	7.6 Robotics and Mechatronics 
	7.6.1 Robotics and Mechatronics 


	8. Biomedical Information Engineering 
	8.1 Telemedicine and Telehealth System 
	8.1.1 Telemedicine Systems and Telecardiology 
	8.1.2 Mobile Health Systems 
	8.1.3 Medical Data Compression and Authentication 
	8.1.4 Telehealth and Homecare 
	8.1.5 Telehealth and WAP-based Systems 
	8.1.6 Telemedicine and Telehealth 

	8.2 Information Systems 
	8.2.1 Information Systems I
	8.2.2 Information Systems II 

	8.3 Virtual and Augmented Reality 
	8.3.1 Virtual and Augmented Reality I 
	8.3.2 Virtual and Augmented Reality II 

	8.4 Knowledge Based Systems 
	8.4.1 Knowledge Based Systems I 
	8.4.2 Knowledge Based Systems II 


	9. Health Care Technology and Biomedical Education 
	9.1 Emerging Technologies for Health Care Delivery 
	9.1.1 Emerging Technologies for Health Care Delivery 

	9.2 Clinical Engineering 
	9.2.1 Technology in Clinical Engineering 

	9.3 Critical Care and Intelligent Monitoring Systems 
	9.3.1 Critical Care and Intelligent Monitoring Systems 

	9.4 Ethics, Standardization and Safety 
	9.4.1 Ethics, Standardization and Safety 

	9.5 Internet Learning and Distance Learning 
	9.5.1 Technology in Biomedical Engineering Education and Training 
	9.5.2 Computer Tools Developed by Integrating Research and Education 


	10. Symposia and Plenaries 
	10.1 Opening Ceremonies 
	10.1.1 Keynote Lecture 

	10.2 Plenary Lectures 
	10.2.1 Molecular Imaging with Optical, Magnetic Resonance, and 
	10.2.2 Microbioengineering: Microbe Capture and Detection 
	10.2.3 Advanced distributed learning, Broadband Internet, and Medical Education 
	10.2.4 Cardiac and Arterial Contribution to Blood Pressure 
	10.2.5 Hepatic Tissue Engineering 
	10.2.6 High Throughput Challenges in Molecular Cell Biology: The CELL MAP

	10.3 Minisymposia 
	10.3.1 Modeling as a Tool in Neuromuscular and Rehabilitation 
	10.3.2 Nanotechnology in Biomedicine 
	10.3.3 Functional Imaging 
	10.3.4 Neural Network Dynamics 
	10.3.5 Bioinformatics 
	10.3.6 Promises and Pitfalls of Biosignal Analysis: Seizure Prediction and Management 



	Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	Ö
	P
	Q
	R
	S
	T
	U
	Ü
	V
	W
	X
	Y
	Z

	Keyword Index
	-
	¦ 
	1
	2
	3
	4
	9
	A
	B
	C
	D
	E
	F
	G
	H
	I
	i
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Committees
	Sponsors
	CD-Rom Help
	-------------------------
	Return
	Previous Page
	Next Page
	Previous View
	Next View
	Print
	-------------------------
	Query
	Query Results
	-------------------------
	Exit CD-Rom


